(1)由 ,可递推 ,两式作差得an-an-1=1进而得到通项公式.
(2)用数学归纳法证明,先由证当n=2时,不等式成立.再假设当n=k(k≥2,k∈N+)时,不等式成立,递推到当n=k+1时成立即可.
(3)构造函数f(x)=1n(1+x)-x,可证得1n(1+x)<x.通过对不等式的左边取自然对数,利用结论可证.
【解析】
(1)当n≥3时,,,可得:,∴an-an-1=1(n≥3,n∈N*).
∵a1+a2=2a2+2-1,∴a2=3.
可得,----------------(4分)
(2)1°当n=2时,b2=b12-2=14>3=a2,不等式成立.
2°假设当n=k(k≥2,k∈N*)时,不等式成立,即bk>k+1.那么,当n=k+1时,bk+1=bk2-(k-1)bk-2=bk(bk-k+1)-2>2bk-2>2(k+1)-2=2k≥k+2,
所以当n=k+1时,不等式也成立.
根据(1°),(2°)可知,当n≥2,n∈N*时,bn>an.--------------(8分)
(3)设,
∴f(x)在(0,+∞)上单调递减,∴f(x)<f(0),∴1n(1+x)<x.
∵当n≥2,n∈N*时,,
∴,
∴
∴.----------------------(12分)