满分5 > 高中数学试题 >

设函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N= .

设函数manfen5.com 满分网的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=   
求函数的定义域时分母不能为零且根式有意义,求g(x)=ln(1+x)的定义域时只要真数大于零即可,分别求得后再取交集. 【解析】 根据题意: 解得:-1<x<1 ∴M∩N={x|-1<x<1} 故答案为:{x|-1<x<1}
复制答案
考点分析:
相关试题推荐
我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:manfen5.com 满分网.如:manfen5.com 满分网,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,manfen5.com 满分网manfen5.com 满分网(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,manfen5.com 满分网,求manfen5.com 满分网
查看答案
我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意manfen5.com 满分网均满足manfen5.com 满分网,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)给定两个函数:manfen5.com 满分网,f2(x)=logax(a>1,x>0).证明:f1(x)∉M,f2(x)∈M.
(3)试利用(2)的结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.
查看答案
manfen5.com 满分网如图所示,南山上原有一条笔直的山路BC,现在又新架设了一条索道AC.小李在山脚B处看索道AC,发现张角∠ABC=120°;从B处攀登400米到达D处,回头看索道AC,发现张角∠ADC=160°;从D处再攀登800米方到达C处.问索道AC长多少(精确到米)?
查看答案
记函数f(x)=manfen5.com 满分网的定义域为A,g(x)=log3[(x-m-2)(x-m)]的定义域为B.
(1)求A;
(2)若A⊆B,求实数m的取值范围.
查看答案
在直三棱柱ABC-A1B1C1中,已知AB=AC=AA1=4,∠BAC=90°,D为B1C1的中点,求异面直线AB1与CD所成角的大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.