满分5 > 高中数学试题 >

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=...

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2
(1)求a,b的值;
(2)若方程f(x)+m=0在manfen5.com 满分网内有两个不等实根,求实数m的取值范围(其中e为自然对数的底,e≈2.7);
(3)令g(x)=f(x)-nx,如果g(x)图象与x轴交于A(x1,0),B(x2,0),x1<x2,AB中点为C(x,0),求证:g′(x)≠0.
(1)由切线方程得函数在x=2处的切线斜率为-3,即f′(2)=-3,由函数f(x)=alnx-bx2得其导函数,进而得f′(2),由f′(2)=-3得关于a、b的方程,又切点在函数图象上,也在切线上,当x=2时分别代入两个函数方程,函数值相等,得第二个关于a、b的方程,求解方程组,得a,b的值; (2)设h(x)=f(x)+m=2lnx-x2+m,求h′(x),令h′(x)>0,h′(x)<0,得函数h(x)的单调区间,得出h(x)的图象的大致走向,得出满足题意的不等式组,解得实数m的取值范围; (3)由点A(x1,0),B(x2,0)在g(x)图象上,把点的坐标代入g(x)的解析式得方程组,两式相减得关于x1、x2、n的方程,假设g′(x)=0成立,求导,得关于x、n的方程,由中点坐标公式转化关于x1、x2、n的方程,两方程消去n,得关于x1、x2的方程,整理此方程,分子分母同除以x2,整理方程,右边为0,设t=,左边得关于t的函数,求此函数的导数,得函数的单调性,得函数值恒小于0,所以方程不成立,所以假设不成立,所以g′(x)≠0. 【解析】 (1), 所以,且aln2-4b=-6+2ln2+2, 解得a=2,b=1. (2)f(x)=2lnx-x2,令h(x)=f(x)+m=2lnx-x2+m, 则=,令h'(x)=0,得x=1(x=-1舍去). 在内,当时,h'(x)>0,所以h(x)是增函数; 当x∈(1,e]时,h'(x)<0,所以h(x)是减函数 则方程h(x)=0在内有两个不等实根的充要条件是 即1<m≤e2-2. (3). 假设结论成立,则有, (1)-(2),得. 所以. 由(4)得,所以, 即,即=, 令. 则,所以u(t)在0<t<1上是增函数, u(t)<u(1)=0,所以(5)式不成立,与假设矛盾, 所以g'(x)≠0.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,manfen5.com 满分网(n≥2,n∈N+),
(1)若manfen5.com 满分网,数列{bn}满足manfen5.com 满分网(n∈N+),求证数列{bn}是等差数列;
(2)若manfen5.com 满分网,求数列{an}中的最大项与最小项,并说明理由;
(3)若1<a1<2,试证明:1<an+1<an<2.
查看答案
已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求manfen5.com 满分网的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求四棱锥P-ABCD的体积V;
(2)若F为PC的中点,求证PC⊥平面AEF;
(3)求证CE∥平面PAB.

manfen5.com 满分网 查看答案
某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为manfen5.com 满分网,且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;
(2)获赔金额ξ的分别列与期望.
查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,manfen5.com 满分网,tanB=3.
(Ⅰ)求角C的值;
(Ⅱ)若a=4,求△ABC面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.