满分5 > 高中数学试题 >

函数y=cos4πx-sin4πx的最小正周期T= .

函数y=cos4πx-sin4πx的最小正周期T=   
把函数解析式先根据平方差公式化简,然后再利用二倍角的余弦函数公式及同角三角函数间的基本关系化简,得到一个角的余弦函数,找出ω的值,代入周期公式T=即可求出函数的最小正周期. 【解析】 y=cos4πx-sin4πx =(cos2πx-sin2πx)(cos2πx+sin2πx) =cos2πx, ∵ω=2π,∴T==1. 故答案为:1
复制答案
考点分析:
相关试题推荐
方程log2(3x-4)=1的解x=    查看答案
已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2
(1)求a,b的值;
(2)若方程f(x)+m=0在manfen5.com 满分网内有两个不等实根,求实数m的取值范围(其中e为自然对数的底,e≈2.7);
(3)令g(x)=f(x)-nx,如果g(x)图象与x轴交于A(x1,0),B(x2,0),x1<x2,AB中点为C(x,0),求证:g′(x)≠0.
查看答案
已知数列{an}中,manfen5.com 满分网(n≥2,n∈N+),
(1)若manfen5.com 满分网,数列{bn}满足manfen5.com 满分网(n∈N+),求证数列{bn}是等差数列;
(2)若manfen5.com 满分网,求数列{an}中的最大项与最小项,并说明理由;
(3)若1<a1<2,试证明:1<an+1<an<2.
查看答案
已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求manfen5.com 满分网的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求四棱锥P-ABCD的体积V;
(2)若F为PC的中点,求证PC⊥平面AEF;
(3)求证CE∥平面PAB.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.