满分5 > 高中数学试题 >

已知二面角α-l-β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α...

已知二面角α-l-β为60°,动点P、Q分别在面α、β内,P到β的距离为manfen5.com 满分网,Q到α的距离为manfen5.com 满分网,则P、Q两点之间距离的最小值为(
manfen5.com 满分网
A.1
B.2
C.manfen5.com 满分网
D.4
分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可. 【解析】 如图 分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D, 连CQ,BD则∠ACQ=∠PDB=60°,, ∴AC=PD=2 又∵ 当且仅当AP=0,即点A与点P重合时取最小值. 故答案选C.
复制答案
考点分析:
相关试题推荐
设z=manfen5.com 满分网(i是虚数单位),则z+2z2+3z3+4z4+5z5+6z6=( )
A.6z
B.6z2
C.6manfen5.com 满分网
D.-6z
查看答案
若函数manfen5.com 满分网,则f(x)的最大值是( )
A.1
B.2
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数manfen5.com 满分网的定义域为( )
A.(-4,-1)
B.(-4,1)
C.(-1,1)
D.(-1,1]
查看答案
已知f是直角坐标平面xOy到自身的一个映射,点P在映射f下的象为点Q,记作Q=f(P).
设P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一个圆,使所有的点Pn(xn,yn)(n∈N*)都在这个圆内或圆上,那么称这个圆为点Pn(xn,yn)的一个收敛圆.特别地,当P1=f(P1)时,则称点P1为映射f下的不动点.
(Ⅰ) 若点P(x,y)在映射f下的象为点Q(2x,1-y).
①求映射f下不动点的坐标;
②若P1的坐标为(1,2),判断点Pn(xn,yn)(n∈N*)是否存在一个半径为3的收敛圆,并说明理由.
(Ⅱ) 若点P(x,y)在映射f下的象为点manfen5.com 满分网,P1(2,3).求证:点Pn(xn,yn)(n∈N*)存在一个半径为manfen5.com 满分网的收敛圆.
查看答案
设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且manfen5.com 满分网,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.