满分5 > 高中数学试题 >

△ABC中,A,B,C所对的边分别为a,b,c,,sin(B-A)=cosC. ...

△ABC中,A,B,C所对的边分别为a,b,c,manfen5.com 满分网,sin(B-A)=cosC.
(1)求A,C;
(2)若S△ABC=manfen5.com 满分网,求a,c.
(1)先根据同角三角函数的基本关系将正切化为正余弦之比再相乘可得到3内角的正弦关系式,再由sin(B-A)=cosC可求出答案. (2)先根据正弦定理得到a与c的关系,再利用三角形的面积公式可得答案. 【解析】 (1)因为 所以左边切化弦对角相乘得到 sinCcosA-cosCsinA=cosCsinB-sinCcosB, 所以sin(C-A)=sin(B-C). 所以C-A=B-C或C-A=π-(B-C)(不成立) 即2C=A+B,C=60°, 所以A+B=120°, 又因为sin(B-A)=cosC=, 所以B-A=30°或B-A=150°(舍), 所以A=45°,C=60°. (2)由(1)知A=45°,C=60°∴B=75°∴sinB= 根据正弦定理可得即:∴a= S=acsinB==3+ ∴c2=12∴c=2 ∴a==2
复制答案
考点分析:
相关试题推荐
如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是⊙O的切线,若∠B=30°,AC=2,则OC的长为   
manfen5.com 满分网 查看答案
(14题和15题二选一,选涂填题号,再做题.)
以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的极坐标方程为θθθ=manfen5.com 满分网(p∈R),它与曲线manfen5.com 满分网相交于两点A和B,则|AB|=    查看答案
设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=    查看答案
设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点
B.存在定点P不在M中的任一条直线上
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上
D.M中的直线所能围成的正三角形面积都相等
其中真命题的代号是    (写出所有真命题的代号). 查看答案
考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点种任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.