(1)当n=1时,a1=S1=2a1-4可求a1=4,当n≥2时,由an=Sn-Sn-1=2an-4-2an-1+4即an=2an-1,可得an,代入已知递推公式可证
(2)Tn=1×2+2×22+…+n•2n,考虑利用错位相减可求Tn
【解析】
(1)当n=1时,a1=S1=2a1-4
∴a1=4
当n≥2时,an=Sn-Sn-1=2an-4-2an-1+4
即an=2an-1
∴
∴an=2n+1
bn+1=2n+1+2bn
∴
又
∴
∴bn=n•2n(n∈N*)
(2)Tn=1×2+2×22+…+n•2n
2Tn=1×22+…+(n-1)•2n+n•2n+1
两式相减得 Tn=-2-22-…-2n+n•2n+1
==(n-1)•2n+1+2(n∈N*).