满分5 > 高中数学试题 >

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、...

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A-EF-D的大小.manfen5.com 满分网

manfen5.com 满分网
法一:(1)作FG∥DC交SD于点G,则G为SD的中点. 要证EF∥平面SAD,只需证明EF平行平面SAD内的直线AG即可. (2)取AG中点H,连接DH,说明∠DMH为二面角A-EF-D的平面角,解三角形求二面角A-EF-D的大小. 法二:建立空间直角坐标系,平面SAD即可证明(1); (2)求出向量和,利用,即可解答本题. 【解析】 法一: (1)作FG∥DC交SD于点G,则G为SD的中点. 连接,又, 故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD. 所以EF∥平面SAD. (2)不妨设DC=2,则SD=4,DG=2,△ADG为等 腰直角三角形. 取AG中点H,连接DH,则DH⊥AG. 又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A, 所以DH⊥面AEF. 取EF中点M,连接MH,则HM⊥EF. 连接DM,则DM⊥EF. 故∠DMH为二面角A-EF-D的平面角. 所以二面角A-EF-D的大小为. 法二:(1)如图,建立空间直角坐标系D-xyz. 设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,. 取SD的中点,则.平面SAD,EF⊄平面SAD, 所以EF∥平面SAD. (2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,, 又,, 所以向量和的夹角等于二面角A-EF-D的平面角.. 所以二面角A-EF-D的大小为.
复制答案
考点分析:
相关试题推荐
甲、乙、丙、丁4名同学被随机地分到A、B、C三个社区参加社会实践,要求每个社区至少有一名同学.
(1)求甲、乙两人都被分到A社区的概率;
(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量ξ为四名同学中到A社区的人数,求ξ的分布列和Eξ的值.
查看答案
已知函数manfen5.com 满分网
(1)若x∈R,求f(x)的最小正周期和单调递增区间;
(2)设manfen5.com 满分网,求f(x)的值域.
查看答案
(《坐标系与参数方程》选做题)已知曲线C1的参数方程为manfen5.com 满分网);以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(cosθ+sinθ)=m,若曲线C1与C2有两个不同的交点,则m的取值
范围是    查看答案
(《几何证明选讲》选做题)如图:已知PA是圆O的切线,切点为A,manfen5.com 满分网.AC是圆O的直径,PC与圆O交于B点,BC=2,则圆O的半径R=   
manfen5.com 满分网 查看答案
若关于x的不等式|x+a|+|x-2|+a<2010的解集为非空集合,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.