满分5 > 高中数学试题 >

已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通...

已知曲线C1manfen5.com 满分网(t为参数),C2manfen5.com 满分网(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=manfen5.com 满分网,Q为C2上的动点,求PQ中点M到直线C1manfen5.com 满分网(t为参数)距离的最小值.
(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C1表示一个圆;曲线C2表示一个椭圆; (2)把t的值代入曲线C1的参数方程得点P的坐标,然后把直线的参数方程化为普通方程,根据曲线C2的参数方程设出Q的坐标,利用中点坐标公式表示出M的坐标,利用点到直线的距离公式表示出M到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值. 【解析】 (1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y-3)2=1, 所以此曲线表示的曲线为圆心(-4,3),半径1的圆; 把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆; (2)把t=代入到曲线C1的参数方程得:P(-4,4), 把直线C3:(t为参数)化为普通方程得:x-2y-7=0, 设Q的坐标为Q(8cosθ,3sinθ),故M(-2+4cosθ,2+sinθ) 所以M到直线的距离d==,(其中sinα=,cosα=) 从而当cosθ=,sinθ=-时,d取得最小值.
复制答案
考点分析:
相关试题推荐
选修4-2 矩阵与变换.
已知二阶矩阵manfen5.com 满分网
查看答案
已知集合A={x|x2+a≤(a+1)x,a∈R}.
(1)是否存在实数a,使得集合A中所有整数的元素和为28?若存在,求出符合条件的a,若不存在,请说明理由.
(2)若以a为首项,a为公比的等比数列前n项和记为Sn,对于任意的n∈N+,均有Sn∈A,求a的取值范围.
查看答案
已知y=f(x)=xlnx.
(1)求函数y=f(x)的图象在x=e处的切线方程;
(2)设实数a>0,求函数manfen5.com 满分网在[a,2a]上的最大值.
(3)证明对一切x∈(0,+∞),都有manfen5.com 满分网成立.
查看答案
如图,在矩形ABCD中,manfen5.com 满分网,以A为圆心1为半径的圆与AB交于E(圆弧DE为圆在矩形内的部分)
(1)在圆弧DE上确定P点的位置,使过P的切线l平分矩形ABCD的面积;
(2)若动圆M与满足题(1)的切线l及边DC都相切,试确定M的位置,使圆M为矩形内部面积最大的圆.

manfen5.com 满分网 查看答案
数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.