登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知点A(-1,0)、B(1,3),向量=(2k-1,2),若⊥,则实数k的值为...
已知点A(-1,0)、B(1,3),向量
=(2k-1,2),若
⊥
,则实数k的值为( )
A.-2
B.-1
C.1
D.2
先用B的坐标减去A即得 的坐标,再利用两个向量垂直,数量积等于0求出实数k的值. 【解析】 ∵=(2,3),向量a=(2k-1,2),∵⊥,∴•=(2,3)•(2k-1,2)=2(2k-1)+6=0, ∴k=-1, 故选 B.
复制答案
考点分析:
相关试题推荐
cos27°sin33°+sin27°cos33°=( )
A.1
B.
C.
D.
查看答案
函数y=x
3
在点(1,1)处的切线的斜率为( )
A.1
B.-1
C.3
D.-3
查看答案
已知数列{a
n
}满足:a
1
=1,a
n+1
=
,记b
n
=a
2n
(n∈N*),S
n
为数列{b
n
}的前n项和.
(Ⅰ)证明数列{b
n
}为等比数列,并求其通项公式;
(Ⅱ)若对任意n∈N*且n≥2,不等式λ≥1+s
n-1
恒成立,求实数λ的取值范围;
(Ⅲ)令c
n
=
,证明:c
n
≤
(n∈N*).
查看答案
设椭圆
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
求椭圆C的方程.
查看答案
已知函数f(x)=x
3
-ax
2
+bx+c,g(x)=x
2
+2x+2,若函数f(x)在x=-1和x=3时取得极值
(1)求实数a,b的值;
(2)若存在x
1
∈[-2,6],x
2
[-2,6],使f(x
1
)≥g(x
2
)成立,求实数c的取值范围.
查看答案
试题属性
题型:选择题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.