满分5 > 高中数学试题 >

正项数列{an}的前n项和为Sn,且4Sn=(a+1)2,n∈N*. (1)试求...

正项数列{an}的前n项和为Sn,且4Sn=(a+1)2,n∈N*
(1)试求数列{an}的通项公式;
(2)设bn=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
(1)由题设知,a1=1,,所以4an=(an+an-1)(an-an-1)+2(an-an-1),由此能求出an=2n-1. (2)由=,利用裂项求和法能求出Tn的值. 【解析】 (1)∵4Sn=(a+1)2,n∈N*,∴…① 当n=1时,,∴a1=1. 当n≥2时,…② ①、②式相减得: 4an=(an+an-1)(an-an-1)+2(an-an-1), ∴2(an+an-1)=(an+an-1)(an-an-1), ∴an-an-1=2, 综上得an=2n-1.(6分) (2) =, ∴Tn= =.(12分)
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网,(ω∈R,ω>0),设函数manfen5.com 满分网,若f(x)的最小正周期为manfen5.com 满分网
(1)求ω的值;
(2)求f(x)的单调区间.
查看答案
已知非零实数a,b,c成等差数列,直线ax+by+c=0与曲线manfen5.com 满分网恒有公共点,则实数m的取值范围为    查看答案
设椭圆manfen5.com 满分网的右焦点为F,P为椭圆上一动点,A(1,1),则manfen5.com 满分网的最小值为    查看答案
已知等差数列{an}中,a1=2,an<an+1,a1,a2,a4成等比数列,则an=    查看答案
已知f(x)是R上的偶函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=x+2,则f(7)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.