古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N
*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A,B,C可供使用.
现用a
n表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)写出a
1,a
2,a
3,并求出a
n;
(2)记b
n=a
n+1,求和
(其中
表示所有的积b
ib
j(1≤i≤j≤n)的和)
(3)证明:
.
查看答案