满分5 > 高中数学试题 >

已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(+φ)(0<φ...

已知函数f(x)=manfen5.com 满分网sin2xsinφ+cos2xcosφ-manfen5.com 满分网sin(manfen5.com 满分网+φ)(0<φ<π),其图象过点(manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
(1)由已知中函数f(x)=sin2xsinφ+cos2xcosφ-sin(+φ)(0<φ<π),其图象过点(,).我们将(,)代入函数的解析式,结合φ的取值范围,我们易示出φ的值. (2)由(1)的结论,我们可以求出y=f(x),结合函数图象的伸缩变换,我们可以得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,不难求出函数的最大值与最小值. 【解析】 ∵函数f(x)=sin2xsinφ+cos2xcosφ-sin(+φ)(0<φ<π), 又因为其图象过点(,). ∴φ- 解得:φ= (2)由(1)得φ=, ∴f(x)=sin2xsinφ+cos2xcosφ-sin(+φ) = ∴ ∵x∈[0,] ∴4x+∈ ∴当4x+=时,g(x)取最大值; 当4x+=时,g(x)取最小值-.
复制答案
考点分析:
相关试题推荐
对于正整数j,设aj,k=j-3(k-1)(k=1,2,3…),如a3,4=3-3(4-1)=-6,对于正数m、n,当n≥2,m≥2时,设b(j,n)=aj,1+aj,2+aj,3+…+aj,n,则b(1,n)=    ;设S(m,n)=b(1,n)+b(2,n)+b(3,n)+…+b(m,n),则S(5,6)=    查看答案
若对任意m∈R,直线x+y+m=0都不是曲线manfen5.com 满分网的切线,则实数a的取值范围是    查看答案
如图,正四面体ABCD的外接球球心为D,E是BC的中点,则直线OE与平面BCD所成角的正切值为   
manfen5.com 满分网 查看答案
已知实数满足约束条件manfen5.com 满分网,则z=x-y的最大值为    查看答案
若(manfen5.com 满分网展开式的第3项为56,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.