满分5 > 高中数学试题 >

袋子中装有大小形状完全相同的m个红球和n个白球,其中m,n满足m>n≥2且m+n...

袋子中装有大小形状完全相同的m个红球和n个白球,其中m,n满足m>n≥2且m+n≤l0(m,n∈N+),若从中取出2个球,取出的2个球是同色的概率等于取出的2个球是异色的概率.
(I)求m,n的值;
(Ⅱ)从袋子中任取3个球,设取到红球的个数为f,求f的分布列与数学期望.
(I)利用组合的方法求出各个事件包含的基本事件,利用古典概型的概率公式表示出取出的2个球是同色的概率和取出的2个球是异色的概率,列出方程求出m,n的值. (II)求出取到红球的个数为f的所有可能的取值,求出取每一个值的概率值,列出分布列,利用分布列的期望公式求出随机变量的期望值. 【解析】 (I)据题意得到 解得m=6,n=3 (II)f的取值为0,1,2,3, P(f=0)=,P(f=1)= P(f=2)=,P(f=3)= f的分布列为 所以Ef=
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网sin2xsinφ+cos2xcosφ-manfen5.com 满分网sin(manfen5.com 满分网+φ)(0<φ<π),其图象过点(manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
对于正整数j,设aj,k=j-3(k-1)(k=1,2,3…),如a3,4=3-3(4-1)=-6,对于正数m、n,当n≥2,m≥2时,设b(j,n)=aj,1+aj,2+aj,3+…+aj,n,则b(1,n)=    ;设S(m,n)=b(1,n)+b(2,n)+b(3,n)+…+b(m,n),则S(5,6)=    查看答案
若对任意m∈R,直线x+y+m=0都不是曲线manfen5.com 满分网的切线,则实数a的取值范围是    查看答案
如图,正四面体ABCD的外接球球心为D,E是BC的中点,则直线OE与平面BCD所成角的正切值为   
manfen5.com 满分网 查看答案
已知实数满足约束条件manfen5.com 满分网,则z=x-y的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.