满分5 > 高中数学试题 >

已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,...

已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值; (2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围. 【解析】 (1)当t=4时, F(x)=g(x)-f(x)=loga,x∈[1,2], 令h(x)==4,x∈[1,2], 设u=x+,x∈[1,2]作出u(x)的图象可知 u(x)=x+在[1,2]上为单调增函数. ∴h(x)在[1,2]上是单调增函数, ∴h(x)min=16,h(x)max=18. 当0<a<1时,有F(x)min=loga18, 令loga18=2,求得a=3>1(舍去); 当a>1时,有F(x)min=loga16, 令loga16=2,求得a=4>1.∴a=4. (2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立, 即当0<a<1,x∈[1,2]时, logax≥2loga(2x+t-2)恒成立, 由logax≥2loga(2x+t-2)可得 loga≥loga(2x+t-2), ∴≤2x+t-2,∴t≥-2x++2. 设u(x)=-2x++2=-2()2++2=-22+, ∵x∈[1,2],∴∈[1,]. ∴u(x)max=u(1)=1. ∴实数t的取值范围为t≥1.
复制答案
考点分析:
相关试题推荐
设f(x)是R上的奇函数,对任意实数x都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:x=1是函数f(x)的一条对称轴
(2)证明函数f(x)是以4为周期的函数,并求x∈[1,5]时,f(x)的解析式.
查看答案
已知函数f(x)=x3+ax2+bx+c在x=-2时取得极值,且图象与直线y=-3x+3切于点P(1,0).
(I)求函数y=f(x)的解析式;
(II)讨论函数y=f(x)的单调性,并求函数y=f(x)在区间[-3,3]上的最值及相应x的值.
查看答案
某射手进行射击练习,每次射出一发子弹,每射击5发算一组,一旦命中就停止,并进入下一组练习,否则一直打完5发子弹才能进入下一组练习.已知他每射击一次的命中率为0.8,且每次射击命中与否互不影响.
(I)求一组练习中所耗用子弹数ξ的分布列,并求ξ的数学期望;
(II)求在完成连续两组练习后,恰好共耗用了4发子弹的概率.
查看答案
设函数manfen5.com 满分网为奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)利用函数单调性的定义判断f(x)在其定义域上的单调性.
查看答案
(不等式选讲选做题)
已知实数a,b,c,d满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则e的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.