若直线l的斜率不存在,不合题意,故直线l的斜率存在,设为k,由直线l过定点P,由P和设出的斜率k,表示出直线l的方程,再根据垂径定理,由弦的一半及半径求出弦心距的长,同时由圆的方程找出圆心坐标和半径,利用点到直线的距离公式表示出圆心到直线l的距离d,使d等于求出的弦心距列出关于k的方程,求出方程的解得到k的值,确定出直线l的斜率,由直线斜率与倾斜角的关系,得到tanα的值,根据倾斜角α的范围,利用特殊角的三角函数值即可求出α的度数.
【解析】
显然直线l的斜率存在,故设直线l的斜率为k,又直线l过P(0,1),
∴直线l的方程为:y-1=kx,即kx-y+1=0,
由圆的方程得到圆心坐标为(1,0),半径r=2,又弦长m=2,
∴圆心到直线的距离为=,
又圆心到直线l的距离d==,解得k=1,
∴tanα=k=1,又α∈(0,π),
则直线l的倾斜角α=.
故答案为: