“每校至少有一个名额的分法”相当于在24个名额之间的23个空隙中选出2个空隙插入分割符号,则有253种方法,再列举出“至少有两个学校的名额数相同”的分配方法,进而得到满足题中条件的分配方法.
【解析】
用4条棍子间的空隙代表3个学校,而用*表示名额.
如|****|*…*|**|表示第一、二、三个学校分别有4,18,2个名额.
若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24+2=26个位置(两端不在内)被2个“|”占领的一种“占位法”.
“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有C232=253种.
又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有(1,1,22),(2,2,20),(3,3,18),(4,4,16),(5,5,14),
(6,6,12),(7,7,10),(8,8,8),(9,9,6),(10,10,4),(11,11,2)共有10C31+1=31种.
∴每校至少有一个名额且各校名额互不相同的分配方法共有253-31=222种.
故答案为:222.