由题设条件,可根据题设中的两个不等式来限定f(2008)的取值范围,从而确定其值,
【解析】
由题意f(2008)≤f(2006)+3×22006≤f(2004)+3×(22006+22004)≤…≤f(0)+3×(22006+22004+…+2 2+2 0)=2008+3×=2007+22008①
f(2008)≥f(2002)+63•22002,≥f(1996)+63×(22002+21996)≥f(1990)+63(22002+21996+21990)≥…≥f(4)+63(22002+21996+21990+…+24)
=f(4)+63×=f(4)+22008-24 ②
又已知,又由f(x+2)-f(x)≤3•2 x,f(x+6)-f(x)≥63•2 x可得f(x+6)-f(x+2)≥60•2 x=15•2 x+2,即f(x+4)-f(x)≥15•2 x,
再由f(x+2)-f(x)≤3•2x,得f(x+4)-f(x+2)≤3•2 x+2,两者相加得,得f(x+4)-f(x)≤15•2x,所以f(x+4)-f(x)=15•2x,
∴f(4)-f(0)=15•2=15
∴f(4)=f(0)+15=2008+15=2023,代入②
解得f(2008)≥2007+22008③
由①③得(2008)=2007+22008
故答案为:2007+22008