满分5 > 高中数学试题 >

已知正方形ABCD的中心在原点,四个顶点都在函数f(x)=ax3+bx(a>0)...

已知正方形ABCD的中心在原点,四个顶点都在函数f(x)=ax3+bx(a>0)图象上.
(1)若正方形的一个顶点为(2,1),求a,b的值,并求出此时函数的单调增区间;
(2)若正方形ABCD唯一确定,试求出b的值.
(1)先依据待定系数法求a,b的值,得函数的解析式,再求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间. (2)设正方形ABCD对角线AC所在的直线方程为y=kx,则其斜率唯一确定,转化为二元方程只有唯一实数根,利用根的判别式求解即可. 【解析】 (1)因为一个顶点为(2,1), 所以必有另三个顶点(-2,-1),(1,-2),(-1,2), 将(2,1),(1,-2)代入y=ax3+bx,得,.(4分) 所以. 因为,令f′(x)>0,得或, 所以函数f(x)单调增区间为和.(6分) (2)设正方形ABCD对角线AC所在的直线方程为y=kx(k≠0), 则对角线BD所在的直线方程为. 由解得, 所以, 同理,, 又因为AO2=BO2,所以.(10分) 即,即. 令得t2-bt+2=0 因为正方形ABCD唯一确定,则对角线AC与BD唯一确定,于是值唯一确定, 所以关于t的方程t2-bt+2=0有且只有一个实数根,又. 所以△=b2-8=0,即.(14分) 因为,a>0,所以b<k;又,所以,故b<0. 因此; 反过来时,,, 于是,;或, 于是正方形ABCD唯一确定.(16分)
复制答案
考点分析:
相关试题推荐
在矩形ABCD中,已知AD=6,AB=2,E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.
(1)求以F、E为焦点,DC和AB所在直线为准线的椭圆的方程.
(2)求⊙H的方程.
(3)设点P(0,b),过点P作直线与⊙H交于M,N两点,若点M恰好是线段PN的中点,求实数b的取值范围.

manfen5.com 满分网 查看答案
2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测.为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计算人数的时间,即n=1;9点20分作为第二个计算人数的时间,即n=2;依此类推…,把一天内从上午9点到晚上24点分成了90个计算单位.
对第n个时刻进入园区的人数f(n)和时间n(n∈N*)满足以下关系(如图1):f(n)=manfen5.com 满分网,n∈N*
对第n个时刻离开园区的人数g(n)和时间n(n∈N*)满足以下关系(如图2):g(n)=manfen5.com 满分网,n∈N*
(1)试计算在当天下午3点整(即15点整)时,世博园区内共有多少游客?
(2)请求出当天世博园区内游客总人数最多的时刻.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)若不等式|f(x)-m|<2在定义域上恒成立,求实数m的取值范围.
查看答案
已知O是△ABC的外心,AB=2,AC=3,x+2y=1,若manfen5.com 满分网=x•manfen5.com 满分网+y•manfen5.com 满分网,(xy≠0),则cos∠BAC=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.