满分5 > 高中数学试题 >

若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别...

若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的极值;
(II)函数f(x)和g(x)是否存在隔离直线?若存在,求出此隔离直线的方程,若不存在,请说明理由.
(1)根据求导公式,求出函数的导数,根据导数判断函数的单调性并求极值 (2)由(1)可知,函数f(x)和g(x)的图象在x=处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y-e=k(x-,即y=kx-k+e,构造函数,求出函数函数的导数,根据导数求出函数的最值 【解析】 (1)∵F(x)=f(x)-g(x)=x2-2clnx(x>0), ∴F′(x)=2x-=(2x2-2c)/x= 令F′(X)=0,得x=, 当0<x<时,F′(X)<0,X>时,F′(x)>0 故当x=时,F(x)取到最小值,最小值是0 (2)由(1)可知,函数f(x)和g(x)的图象在x=处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y-e=k(x-,即y=kx-k+e 由f(x)≥kx-k+e(x⊂R),可得x2-kx-k+e, 由f(x)≥kx-k+e(x⊂R),可得x2-kx+k-e≥0当x⊂R恒成立, 则△=k2-4k+4e=(k-2)2≤0,只有k=2,此时直线方程为:y=2x-e, 下面证明g(x)≤2x-eexx>0时恒成立 令G(x)=2x-e-g(x)=2x-e-2elnx, G′(X)=2-=(2x-2c)/x=2(x-)/x, 当x=时,G′(X)=0,当0<x<时G′(X)>0, 则当x=时,G(x)取到最小值,极小值是0,也是最小值. 所以G(x)=2x-e-g(x)≥0,则g(x)≤2x-e当x>0时恒成立. ∴函数f(x)和g(x)存在唯一的隔离直线y=2x-e
复制答案
考点分析:
相关试题推荐
已知点A(-1,0)、B(1,0)和动点M满足:∠AMB=2θ,且|AM|•|BM|cos2θ=3,动点M的轨迹为曲线C,过点B的直线交C于P、Q两点.
(1)求曲线C的方程;
(2)求△APQ面积的最大值.
查看答案
某商场举行周末有奖促销活动,凡在商场一次性购物满500元的顾客可获得一次抽奖机会.抽奖规则:自箱中一次摸出两个球,确定颜色后放回,奖金数如下表:
球的颜色一红一蓝两蓝两红
奖金数100元150元200元
经测算该商场赢利为销售额的10%,已知箱中已放有2个红色球和5个蓝色球,为使本次抽奖活动不亏本,该商场应在箱中至少放入多少个其它颜色的球?(抽出任一颜色球的概率相同).
查看答案
在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC=CD=1.
(1)求证:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
(3)若直线BD与平面ACD所成的角为θ,求θ的取值范围.

manfen5.com 满分网 查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),manfen5.com 满分网
(1)若manfen5.com 满分网,求角α的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),则关于x的不等式cx2-bx+a>0有如下解法:由manfen5.com 满分网,令manfen5.com 满分网,则manfen5.com 满分网,所以不等式cx2-bx+a>0的解集为manfen5.com 满分网.参考上述解法,已知关于x的不等式manfen5.com 满分网的解集为(-2,-1)∪(2,3),则关于x的不等式manfen5.com 满分网的解集    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.