已知数列{a
n}的前n项和S
n是二项式(1+2x)
2n(n∈N
* )展开式中含x奇次幂的系数和.
(1)求数列{a
n}的通项公式;
(2)设f(n)=
,求f(0)+f(
)+f(
)+…+f(
);
(3)证明:
+
+…+
≥
(1-
).
考点分析:
相关试题推荐
若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x
2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的极值;
(II)函数f(x)和g(x)是否存在隔离直线?若存在,求出此隔离直线的方程,若不存在,请说明理由.
查看答案
已知点A(-1,0)、B(1,0)和动点M满足:∠AMB=2θ,且|AM|•|BM|cos
2θ=3,动点M的轨迹为曲线C,过点B的直线交C于P、Q两点.
(1)求曲线C的方程;
(2)求△APQ面积的最大值.
查看答案
某商场举行周末有奖促销活动,凡在商场一次性购物满500元的顾客可获得一次抽奖机会.抽奖规则:自箱中一次摸出两个球,确定颜色后放回,奖金数如下表:
球的颜色 | 一红一蓝 | 两蓝 | 两红 |
奖金数 | 100元 | 150元 | 200元 |
经测算该商场赢利为销售额的10%,已知箱中已放有2个红色球和5个蓝色球,为使本次抽奖活动不亏本,该商场应在箱中至少放入多少个其它颜色的球?(抽出任一颜色球的概率相同).
查看答案
在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC=CD=1.
(1)求证:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
(3)若直线BD与平面ACD所成的角为θ,求θ的取值范围.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),
.
(1)若
,求角α的值;
(2)若
,求
的值.
查看答案