满分5 > 高中数学试题 >

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn...

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),令manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1
求证:①对于任意正整数n,都有manfen5.com 满分网.②对于任意的mmanfen5.com 满分网,均存在n∈N*,使得n≥n时,Tn>m.
(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),所以an=an-1+2n-1(n≥3),由此能够求出数列{an}的通项公式. (Ⅱ)①由于==.由此能够证明对于任意正整数n,都有. ②若Tn>m,其中m∈,则有,则,故,由此能够证明对于任意的m,均存在n∈N*,使得n≥n时,Tn>m. 【解析】 (Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3), 即an=an-1+2n-1(n≥3)…(1分) ∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2 =2n-1+2n-2+…+22+5 =2n-1+2n-2+…+22+2+1+2 =2n+1,n≥3.…(3分) 检验知n=1,2时,结论也成立 故an=2n+1.…(4分) (Ⅱ) ①由于 = =. 故Tn=b1+b2•2+b3•22+…+bn•2n-1 =+…+ = < =.…(9分) ②若Tn>m,其中m∈,则有, 则, 故, 取 =[](其中[x]表示不超过x的最大整数), 则当n>n时,Tn>m.…(14分)
复制答案
考点分析:
相关试题推荐
过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP、AQ,P、Q为切点.
(1)若切线AP,AQ的斜率分别为k1和k2,求证:k1•k2为定值,并求出定值;
(2)求证:直线PQ恒过定点,并求出定点坐标; 
(3)当manfen5.com 满分网最小时,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知函数f(x)=x3+ax2+bx+1(x∈R),a,b∈R.函数f(x)的图象在点P(1,f(1))处的切线方程为y=x+4.
(I)求函数f(x)的解析式;
(II)若函数f(x)在区间manfen5.com 满分网上是单调函数,求实数k的取值范围.
查看答案
如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为棱A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小;
(Ⅲ)在(Ⅱ)的条件下,求点C1到面PAC的距离.

manfen5.com 满分网 查看答案
在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答对这道题的概率是manfen5.com 满分网,甲、丙两人都回答错的概率是manfen5.com 满分网,乙、丙两人都回答对的概率是manfen5.com 满分网
(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人中恰有两人回答对该题的概率.
查看答案
已知向量manfen5.com 满分网=(sin(ωx+φ),2),manfen5.com 满分网=(1,cos(ωx+φ)),ω>0,0<φ<manfen5.com 满分网.函数f(x)=(manfen5.com 满分网+manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网),若y=f(x)的图象的一个对称中心与它相邻的一个对称轴之间的距离为1,且过点M(1,manfen5.com 满分网).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)当-1≤x≤1时,求函数f(x)的单调区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.