已知二次函数f(x)=ax
2+bx+c,直线l
1:x=2,l
2:y=-t
2+8t(其中0≤t≤2.t为常数);若直线l
1、l
2与函数f(x)的图象以及l
1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
考点分析:
相关试题推荐
设x
1,x
2是函数
的两个极值点,且|x
1-x
2|=2.
(Ⅰ)证明:0<a≤1;
(Ⅱ)证明:
.
查看答案
据调查,湖南某地区有100万从事传统农业的农民,人均年收入3000元.为了增加农民的收入,当地政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作.据估计,如果有x(x>0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x%,而进入企业工作的农民人均年收入为3000a元(a>0为常数).
(I)在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的年总收入,求x的取值范围;
(Ⅱ)在(I)的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大?
查看答案
设S
n是数列{a
n}的前n项和,所有项a
n>0,且
,
(Ⅰ)求数列{a
n}的通项公式.
(Ⅱ)已知b
n=2
n,求T
n=a
1b
1+a
2b
2+…+a
nb
n的值.
查看答案
在一次抗洪抢险中,准备用射击的方法引爆从河上游漂流而下的一只巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射击命中的概率都是
,每次命中与否互相独立.
(Ⅰ)求恰好射击5次引爆油罐的概率;
(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望.
查看答案
在△ABC中,角A、B、C所对边分别为a,b,c,已知
,且最长边的边长为l,
求:
(1)角C的大小;
(2)△ABC最短边的长.
查看答案