满分5 > 高中数学试题 >

如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点...

manfen5.com 满分网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.
(1)要证DM∥平面APC,只需证明MD∥AP(因为AP⊂面APC)即可. (2)在平面ABC内直线AP⊥BC,BC⊥AC,即可证明BC⊥面APC,从而证得平面ABC⊥平面APC; (3)因为BC=4,AB=20,求出三棱锥的高,即可求三棱锥D-BCM的体积. 证明:(I)由已知得,MD是△ABP的中位线 ∴MD∥AP∵MD⊄面APC,AP⊂面APC ∴MD∥面APC;(4分) (II)∵△PMB为正三角形,D为PB的中点 ∴MD⊥PB,∴AP⊥PB又∵AP⊥PC,PB∩PC=P ∴AP⊥面PBC(6分)∵BC⊂面PBC∴AP⊥BC 又∵BC⊥AC,AC∩AP=A∴BC⊥面APC,(8分) ∵BC⊂面ABC∴平面ABC⊥平面APC;(10分) (III)由题意可知,MD⊥面PBC, ∴MD是三棱锥D-BCM的高, ∴.(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an}中,manfen5.com 满分网,点(n,,2an+1-an)(n∈N*)在直线y=x上.
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(Ⅲ)求数列{an}的通项公式.
查看答案
雅山中学采取分层抽样的方法从应届高三学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.
文科25
理科103
(Ⅰ)若在该样本中从报考文科的学生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)用假设检验的方法分析有多大的把握认为雅山中学的高三学生选报文理科与性别有关?
参考公式和数据:manfen5.com 满分网

p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.072.713.845.026.647.8810.83

查看答案
已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求cosβ的值;
(Ⅱ)求sinα的值.
查看答案
如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为   
manfen5.com 满分网 查看答案
已知曲线manfen5.com 满分网(t为参数)与曲线manfen5.com 满分网(θ为参数)的交点为A,B,,则|AB|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.