满分5 > 高中数学试题 >

已知,椭圆C过点A,两个焦点为(-1,0),(1,0). (1)求椭圆C的方程;...

已知,椭圆C过点Amanfen5.com 满分网,两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
(Ⅰ)由题意,c=1,可设椭圆方程代入已知条件得,求出b,由此能够求出椭圆方程. (Ⅱ)设直线AE方程为:,代入得,再点在椭圆上,结合直线的位置关系进行求解. 【解析】 (Ⅰ)由题意,c=1, 可设椭圆方程为, 解得b2=3,(舍去) 所以椭圆方程为. (Ⅱ)设直线AE方程为:, 代入得 设E(xE,yE),F(xF,yF), 因为点在椭圆上, 所以,. 又直线AF的斜率与AE的斜率互为相反数, 在上式中以-K代K,可得, 所以直线EF的斜率 即直线EF的斜率为定值,其值为.
复制答案
考点分析:
相关试题推荐
某人向一目标射击4次,每次击中目标的概率为manfen5.com 满分网.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).
查看答案
manfen5.com 满分网如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.
(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;
(2)用反证法证明:直线ME与BN是两条异面直线.
查看答案
如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,manfen5.com 满分网≈1.414,manfen5.com 满分网≈2.449).

manfen5.com 满分网 查看答案
以知F是双曲线manfen5.com 满分网的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为    查看答案
设某几何体的三视图如下(尺寸的长度单位为m)则该几何体的体积为    m3manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.