满分5 > 高中数学试题 >

选修4-1:几何证明讲 已知△ABC中,AB=AC,D是△ABC外接圆劣弧上的点...

选修4-1:几何证明讲
已知△ABC中,AB=AC,D是△ABC外接圆劣弧manfen5.com 满分网上的点(不与点A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+manfen5.com 满分网,求△ABC外接圆的面积.

manfen5.com 满分网
首先对于(1)要证明AD的延长线平分∠CDE,即证明∠EDF=∠CDF,转化为证明∠ADB=∠CDF,再根据A,B,C,D四点共圆的性质,和等腰三角形角之间的关系即可得到. 对于(2)求△ABC外接圆的面积.只需解出圆半径,故作等腰三角形底边上的垂直平分线即过圆心,再连接OC,根据角之间的关系在三角形内即可求得圆半径,可得到外接圆面积. 【解析】 (Ⅰ)如图,设F为AD延长线上一点 ∵A,B,C,D四点共圆,∴∠CDF=∠ABC 又AB=AC∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF, 对顶角∠EDF=∠ADB,故∠EDF=∠CDF, 即AD的延长线平分∠CDE. (Ⅱ)设O为外接圆圆心,连接AO交BC于H,则AH⊥BC. 连接OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°. 设圆半径为r,则r+r=2+,a得r=2, 外接圆的面积为4π. 故答案为4π.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x2-ax+(a-1)lnx,a>1.
(1)讨论函数f(x)的单调性;
(2)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有manfen5.com 满分网
查看答案
已知,椭圆C过点Amanfen5.com 满分网,两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
查看答案
某人向一目标射击4次,每次击中目标的概率为manfen5.com 满分网.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).
查看答案
manfen5.com 满分网如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.
(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;
(2)用反证法证明:直线ME与BN是两条异面直线.
查看答案
如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,manfen5.com 满分网≈1.414,manfen5.com 满分网≈2.449).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.