满分5 > 高中数学试题 >

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆...

manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
(1)可以先由平面ABCD⊥平面ABEF以及CB⊥AB证得CB⊥平面ABEF,⇒AF⊥CB.又因为AB为圆O的直径⇒AF⊥BF,就可证:AF⊥平面CBF; (2)取DF的中点为N,利用MNAO⇒MNAO为平行四边形⇒OM∥AN即可.既用线线平行来证线面平行. (3)先把两个锥体的体积套公式求出来,就可求出其体积之比. 【解析】 (1)证明:由平面ABCD⊥平面ABEF,CB⊥AB, 平面ABCD∩平面ABEF=AB, 得CB⊥平面ABEF, 而AF⊂平面ABEF,所以AF⊥CB(2分) 又因为AB为圆O的直径, 所以AF⊥BF,(3分) 又BF∩CB=B,所以AF⊥平面CBF(4分) (2)证明:设DF的中点为N,连接AN,MN 则MNCD,又AOCD 则MNAO,所以四边形MNAO为平行四边形,(6分) 所以OM∥AN,又AN⊂平面DAF,OM⊄平面DAF, 所以OM∥平面DAF.(8分) (3)过点F作FG⊥AB于G,因为平面ABCD⊥平面ABEF, 所以FG⊥平面ABCD,所以(9分) 因为CB⊥平面ABEF, 所以(11分) 所以VF-ABCD:VF-CBE=4:1.(12分)
复制答案
考点分析:
相关试题推荐
已知动点manfen5.com 满分网在角α的终边上.
(1)求tanα;
(2)若manfen5.com 满分网,求实数t的值;
(3)记manfen5.com 满分网,试用t将S表示出来.
查看答案
设复数z=(a2-4sin2θ)+(1+2cosθ)i,其中i为虚数单位,a为实数,θ∈(0,π).若z是方程x2-2x+5=0的一个根,且z在复平面内所对应的点在第一象限,求θ与a的值.
查看答案
manfen5.com 满分网manfen5.com 满分网,(x,y)∈M∪N,当2x+y取得最大值时,(x,y)∈N,(x,y)∉M,则实数t的取值范围是    查看答案
在△ABC中,A=60°,a=2,记△ABC的周长为S1,面积为S2,则manfen5.com 满分网的最小值是    查看答案
当θ取遍所有值时,直线manfen5.com 满分网所围成的图形面积为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.