双曲线M的中心在原点,并以椭圆
+
=1的焦点为焦点,以抛物线y
2=-2
x的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线l:y=kx+3 与双曲线M相交于A、B两点,O是原点.
①当k为何值时,使得
•
=0?
②是否存在这样的实数k,使A、B两点关于直线y=mx+12对称?若存在,求出k的值;若不存在,说明理由.
考点分析:
相关试题推荐
已知函数f(x)=2-
,数列{a
n}满足a
n=f(a
n-1)(n≥2,nN
*).若
,数列{b
n}满足
(1)求证:数列{b
n}是等差数列;
(2)设c
n=(2b
n+6)•2
n-1,求数列{c
n}的前n项和T
n.
查看答案
如图,在长方体ABCD-A
1B
1C
1D
1中,AD=AA
1=1,AB=2,点E在棱AB上移动.
(1)证明:D
1E⊥A
1D;
(2)当E为AB的中点时,求点E到面ACD
1的距离;
(3)AE等于何值时,二面角D
1-EC-D的大小为
.
查看答案
某公司一年需要计算机元件8000个,每天需同样多的元件用于组装整机,该元件每年分n次进货,每次购买元件的数量均为x,购一次货需手续费500元,已购进而未使用的元件要付库存费,可以认为平均库存量为
件,每个元件的库存费是一年2元,请核算一下,每年进货几次花费最小?
查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,
.
(Ⅰ)求
的值;
(Ⅱ)若b=2,求△ABC面积的最大值.
查看答案
(1)由“若a,b,c∈R,则(ab)c=a(bc)”类比“若
为三个向量,则
”;
(2)在数列{a
n}中,a
1=0,a
n+1=2a
n+2,猜想a
n=2
n-2;
(3)在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;
(4)若f(x)=2cos
2x+2sinxcosx则f(
)=
.
上述四个推理中,得出的结论正确的是
.(写出所有正确结论的序号)
查看答案