满分5 > 高中数学试题 >

设函数f(x)=x3+ax2-a2x+m(a≥0). (Ⅰ)求函数f(x)的单调...

设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
(Ⅰ)要求函数f(x)的单调区间,即求函数f(x)的f′(x),在根据导数与单调性的关系求解即可 (Ⅱ)要使函数f(x)在x∈[-1,1]内没有极值点,只需f′(x)=0在(-1,1)上没有实根即可 (Ⅲ)要求对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,只需求当x∈[-2,2]时f(x)max≤1,即m≤9-4a-2a2在a∈[3,6]上恒成立,即求9-4a-2a2在a∈[3,6]的最小值. 【解析】 (Ⅰ)∵f'(x)=3x2+2ax-a2= 当a=0时f′(x)≥0 ∴函数f(x)的单调递增区间为(-∞,+∞) 当a>0时 由f′(x)>0得x<-a或, 由f′(x)<0得, ∴函数f(x)的单调递增区间为(-∞,-a),, 单调递减区间为 (Ⅱ)当a=0时由(1)知函数f(x)在[-1,1]上单调递增, 则f(x)在[-1,1]上没有极值点; 当a>0时∵ 由(1)知f(x)在上单调递增, 在上单调递减;则要f(x)在[-1,1]上没有极值点, 则只需f′(x)=0在(-1,1)上没有实根.∴,解得a≥3 综上述可知:a的取值范围为[3,+∞)∪{0} (Ⅲ)∵a∈[3,6), ∴≤-3 又x∈[-2,2] 由(1)的单调性质知f(x)max=max{f(-2),f(2)} 而f(2)-f(-2)=16-4a2<0 ∴f(x)max=f(-2)=-8+4a+2a2+m ∵f(x)≤1在[-2,2]上恒成立 ∴f(x)max≤1即-8+4a+2a2+m≤1 即m≤9-4a-2a2在a∈[3,6]上恒成立, ∵9-4a-2a2的最小值为-87 ∴m≤-87 故答案为(Ⅰ)当a=0时f′(x)≥0, 函数f(x)的单调递增区间为(-∞,+∞), 当a>0时函数f(x)的单调递增区间为, 单调递减区间为, (Ⅱ)a的取值范围为:[3,+∞)∪{0}, (Ⅲ)m的取值范围为:m≤-87.
复制答案
考点分析:
相关试题推荐
双曲线M的中心在原点,并以椭圆manfen5.com 满分网+manfen5.com 满分网=1的焦点为焦点,以抛物线y2=-2manfen5.com 满分网x的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线l:y=kx+3 与双曲线M相交于A、B两点,O是原点.
①当k为何值时,使得manfen5.com 满分网manfen5.com 满分网=0?
②是否存在这样的实数k,使A、B两点关于直线y=mx+12对称?若存在,求出k的值;若不存在,说明理由.
查看答案
已知函数f(x)=2-manfen5.com 满分网,数列{an}满足an=f(an-1)(n≥2,nN*).若manfen5.com 满分网,数列{bn}满足manfen5.com 满分网
(1)求证:数列{bn}是等差数列;
(2)设cn=(2bn+6)•2n-1,求数列{cn}的前n项和Tn
查看答案
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为manfen5.com 满分网

manfen5.com 满分网 查看答案
某公司一年需要计算机元件8000个,每天需同样多的元件用于组装整机,该元件每年分n次进货,每次购买元件的数量均为x,购一次货需手续费500元,已购进而未使用的元件要付库存费,可以认为平均库存量为manfen5.com 满分网件,每个元件的库存费是一年2元,请核算一下,每年进货几次花费最小?
查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若b=2,求△ABC面积的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.