满分5 > 高中数学试题 >

已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足manfen5.com 满分网,求manfen5.com 满分网的取值范围.
(1)先由离心率为,求出a,b,c的关系,再利用直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切,求出b即可求椭圆C1的方程; (2)把题中条件转化为动点M的轨迹是以l1:x=-1为准线,F2为焦点的抛物线,即可求点M的轨迹C2的方程; (3)先设出点R,S的坐标,利用求出点R,S的坐标之间的关系,再用点R,S的坐标表示出,利用函数求最值的方法即可求的取值范围. 【解析】 (1)由得2a2=3b2,又由直线l:y=x+2与圆x2+y2=b2相切, 得,,∴椭圆C1的方程为:.(4分) (2)由MP=MF2得动点M的轨迹是以l1:x=-1为准线, F2为焦点的抛物线,∴点M的轨迹C2的方程为y2=4x.(8分) (3)Q(0,0),设, ∴, 由,得,∵y1≠y2 ∴化简得,(10分) ∴(当且仅当y1=±4时等号成立), ∵, 又∵y22≥64,∴当y22=64,即y2=±8时, ∴的取值范围是.(13分)
复制答案
考点分析:
相关试题推荐
已知函数y=f(x)=-x3+ax2+b(a,b∈R).
(Ⅰ)要使f(x)在(0,2)上单调递增,试求a的取值范围;
(Ⅱ)当a<0时,若函数满足y极大值=1,y极小值=-3,
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的图象上斜率最小的切线方程.
(Ⅲ)求a取值范围.
查看答案
如图,斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,低面ABC是边长为2的正三角形,其重心为G点(重心为三条中线的交点).E是线段BC1上一点且manfen5.com 满分网
(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的大小.

manfen5.com 满分网 查看答案
已知正数数列{an}中,a1=2.若关于x的方程x2-(manfen5.com 满分网)x+manfen5.com 满分网=0(n∈N×))对任意自然数n都有相等的实根.
(1)求a2,a3的值;
(2)求证manfen5.com 满分网(n∈N×).
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c=manfen5.com 满分网,且manfen5.com 满分网
(1)求角C的大小;
(2)求△ABC的面积.
查看答案
已知an=n,把数列{an}的各项排列成如下的三角形状:记A(m,n)表示第m行的第n个数,则A(10,10)=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.