满分5 > 高中数学试题 >

已知数列{an},{bn}满足bn=an+1-an,其中n=1,2,3,…. (...

已知数列{an},{bn}满足bn=an+1-an,其中n=1,2,3,….
(Ⅰ)若a1=1,bn=n,求数列{an}的通项公式;
(Ⅱ)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(ⅰ)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列;
(ⅱ)若数列manfen5.com 满分网中任意一项的值均未在该数列中重复出现无数次.求a1应满足的条件.
(Ⅰ)根据数列的基本性质以及题中已知条件便可求出数列{an}的通项公式; (Ⅱ)(ⅰ)先根据题中已知条件推导出bn+6=bn,然后求出cn+1-cn为定值,便可证明数列{cn}为等差数列; (ⅱ)数列{a6n+i}均为以7为公差的等差数列,然后分别讨论当时和当时,数列是否满足题中条件,便可求出a1应满足的条件. 【解析】 (Ⅰ)当n≥2时, 有an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =a1+b1+b2+…+bn-1(2分) =.(3分) 又因为a1=1也满足上式, 所以数列{an}的通项为.(4分) (Ⅱ)由题设知:bn>0,对任意的n∈N*有bn+2bn=bn+1,bn+1bn+3=bn+2得bn+3bn=1, 于是又bn+3bn+6=1,故bn+6=bn(5分) ∴b6n-5=b1=1,b6n-4=b2=2,b6n-3=b3=2,b6n-2=b4=1, (ⅰ)cn+1-cn=a6n+5-a6n-1=b6n-1+b6n+b6n+1+b6n+2+b6n+3+b6n+4=(n≥1), 所以数列{cn}为等差数列.(7分) (ⅱ)设dn=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6}), 所以dn+1-dn=a6n+6+i-a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5=7(n≥0) 所以数列{a6n+i}均为以7为公差的等差数列.(9分) 设, (其中n=6k+i(k≥0),i为{1,2,3,4,5,6}中的一个常数), 当时,对任意的n=6k+i有=;(10分) 由,i∈{1,2,3,4,5,6}知; 此时重复出现无数次. 当时,= ①若,则对任意的k∈N有fk+1<fk,所以数列为单调减数列; ②若,则对任意的k∈N有fk+1>fk,所以数列为单调增数列; (12分)(i=1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多各出现一次, 即数列中任意一项的值最多出现六次. 综上所述:当时,数列中必有某数重复出现无数次. 当a1∉B时,数列中任意一项的值均未在该数列中重复出现无数次.(14分)
复制答案
考点分析:
相关试题推荐
在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若manfen5.com 满分网
(1)求证:x与y的关系为manfen5.com 满分网
(2)设manfen5.com 满分网,定义在R上的偶函数F(x),当x∈[0,1]时F(x)=f(x),且函数F(x)图象关于直线x=1对称,求证:F(x+2)=F(x),并求x∈[2k,2k+1](k∈N)时的解析式;
(3)在(2)的条件下,不等式F(x)<-x+a在x∈[2k,2k+1](k∈N)上恒成立,求实数a的取值范围.
查看答案
已知椭圆manfen5.com 满分网的长轴为4,且点manfen5.com 满分网在该椭圆上.
(I)求椭圆的方程;
(II)过椭圆右焦点的直线l交椭圆于A,B两点,若以AB为直径的圆径的圆经过原点,求直线l的方程.
查看答案
如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=manfen5.com 满分网
(I)求证:AO⊥平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离.

manfen5.com 满分网 查看答案
已知函数f(x)=2sinωxcosωx-2cos2ωx(x∈R,ω>0),相邻两条对称轴之间的距离等于manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的最大值和最小值及相应的x值.
查看答案
将函数manfen5.com 满分网的图象向右平移a(a>0)个单位,所得图象的函数为偶函数,则a的最小值为 ( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.