满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,且Sn=(m+1)-man对任意正整数n都成立,...

设数列{an}的前n项和为Sn,且Sn=(m+1)-man对任意正整数n都成立,其中m为常数,m<-1
(1)求证:{an(2)}是等比数列;
(3)设数列{an(4)}的公比q=f(m)(5),数列{bn}(6)满足:manfen5.com 满分网(7),bn=f(bn-1)(8)(n≥2,n∈N)(9),求数列{bnbn+1}(10)的前n(11)项和Tn(12)
(1)由已知得:an+1=man-man+1,即(m+1)an+1=man对任意n∈N*都成立.所以 ,由此知数列{an}等比数列. (2)因为a1=1,从而 ,所以 ,,即 . ,,由此入手能求出Tn. 【解析】 (1)由已知Sn+1=(m+1)-man+1(1)Sn=(m+1)-man(2) 由(1)-(2)得:an+1=man-man+1, 即(m+1)an+1=man对任意n∈N*都成立.∵m为常数,且m<-1. 又∵a1=1≠0∴,即数列{an}等比数列(5分) (2)当n=1时,a1=(m+1)-ma1, ∴a1=1,从而 ,由(1)得, ∴ ∴,即 . ∴为等差数列,,, =, Tn=b1b2+b2b3+b3b4+…+bnbn+1 = =.
复制答案
考点分析:
相关试题推荐
如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2manfen5.com 满分网,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P-ACDE的体积.

manfen5.com 满分网 查看答案
箱子里装有10个大小相同的编号为1、2、3的小球,其中1号小球有2个,2号小球有m,3号小球有n个,且m<n.从箱子里一次摸出两个球号码是2号和3号各一个的概率是manfen5.com 满分网
(1)求m,n的值;
(2)从箱子里一次任意摸出两个球,设得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望.
查看答案
已知:函数manfen5.com 满分网
(1)求函数f(x)的最小正周期和值域;
(2)若函数f(x)的图象过点manfen5.com 满分网manfen5.com 满分网.求manfen5.com 满分网的值.
查看答案
如图,设矩形ABCD(AB>AD)的周长是20,把三角形ABC沿AC折起来,AB折过去后,交DC于点F,设AB=x,则三角形ADF的面积最大时的x的值为   
manfen5.com 满分网 查看答案
已知对任意平面向量manfen5.com 满分网=(x,y),把manfen5.com 满分网绕其起点沿逆时针方向旋转θ角得到向量manfen5.com 满分网=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ角得到点P.设平面内曲线C上的每一点绕原点沿逆时针方向旋转manfen5.com 满分网后得到点的轨迹是曲线x2-y2=2,则原来曲线C的方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.