满分5 > 高中数学试题 >

已知函数f(x)=mx3-(2+)x2+4x+1,g(x)=mx+5 (Ⅰ)当m...

已知函数f(x)=manfen5.com 满分网mx3-(2+manfen5.com 满分网)x2+4x+1,g(x)=mx+5
(Ⅰ)当m≥4时,求函数f(x)的单调递增区间;
(Ⅱ)是否存在m<0,使得对任意的x1,x2∈[2,3]都有f(x1)-g(x2)≤1?若存在,求m的取值范围;若不存在,请说明理由.
(1)利用导数研究函数的单调性.由于参数m决定了与1的大小关系,从而决定导数的正负,因此必须进行分类讨论,通过比较与1的大小,求出函数的单调增区间; (2)先假设存在,将对任意的x1,x2∈[2,3]都有f(x1)-g(x2)≤1转化为f(x)max-f(x)min≤1,从而得到关于m的不等式,求出m的取值范围. 【解析】 (Ⅰ)∵,∴f′(x)=mx2-(4+m)x+4=(mx-4)(x-1) 1)若m>4,则,此时都有, 有f′(x)<0,∴f(x)的单调递增区间为和[[1,+∞); 2)若m=4,则f′(x)=4(x-1)2≥0,∴f(x)的单调递增区间为(-∞,+∞). (Ⅱ)当m<0时,且 ∴当2≤x≤3时,都有f′(x)<0 ∴此时f(x)在[2,3]上单调递减,∴ 又g(x)=mx+5在[2,3]上单调递减,∴g(x)min=g(3)=3m+5 ∴,解得,又m<0, 所以
复制答案
考点分析:
相关试题推荐
椭圆的两个焦点坐标分别为manfen5.com 满分网manfen5.com 满分网,且椭圆过点(manfen5.com 满分网
(1)求椭圆方程;
(2)过点manfen5.com 满分网作直线l交该椭圆于M,N两点(直线l不与x轴重合),A为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由.
查看答案
设数列{an}的前n项和为Sn,且Sn=(m+1)-man对任意正整数n都成立,其中m为常数,m<-1
(1)求证:{an(2)}是等比数列;
(3)设数列{an(4)}的公比q=f(m)(5),数列{bn}(6)满足:manfen5.com 满分网(7),bn=f(bn-1)(8)(n≥2,n∈N)(9),求数列{bnbn+1}(10)的前n(11)项和Tn(12)
查看答案
如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2manfen5.com 满分网,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P-ACDE的体积.

manfen5.com 满分网 查看答案
箱子里装有10个大小相同的编号为1、2、3的小球,其中1号小球有2个,2号小球有m,3号小球有n个,且m<n.从箱子里一次摸出两个球号码是2号和3号各一个的概率是manfen5.com 满分网
(1)求m,n的值;
(2)从箱子里一次任意摸出两个球,设得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望.
查看答案
已知:函数manfen5.com 满分网
(1)求函数f(x)的最小正周期和值域;
(2)若函数f(x)的图象过点manfen5.com 满分网manfen5.com 满分网.求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.