满分5 > 高中数学试题 >

已知圆C的圆心为C(m,0),m<3,半径为,圆C与椭圆E:有一个公共点A(3,...

已知圆C的圆心为C(m,0),m<3,半径为manfen5.com 满分网,圆C与椭圆E:manfen5.com 满分网有一个公共点A(3,1),F1,F2分别是椭圆的左、右焦点.
(1)求圆C的标准方程
(2)若点P的坐标为(4,4),试探究斜率为k的直线PF1与圆C能否相切,若能,求出椭圆E和直线PF1的方程;若不能,请说明理由.
(1)由已知可设圆C的方程为(x-m)2+y2=5(m<3),将点A的坐标代入圆C的方程,得(3-m)2+1=5.由此能求出圆C的方程. (2)直线PF1能与圆C相切,设直线PF1的方程为y=k(x-4)+4,若直线PF1与圆C相切,则.当时,直线PF1与x轴的交点横坐标为,不合题意,当时,直线PF1与x轴的交点横坐标为-4,由此能求出椭圆E的方程. 【解析】 (1)由已知可设圆C的方程为(x-m)2+y2=5(m<3) 将点A的坐标代入圆C的方程,得(3-m)2+1=5 即(3-m)2=4,解得m=1,或m=5 ∵m<3∴m=1 ∴圆C的方程为(x-1)2+y2=5.(6分) (2)直线PF1能与圆C相切 依题意设直线PF1的方程为y=k(x-4)+4,即kx-y-4k+4=0 若直线PF1与圆C相切,则 ∴4k2-24k+11=0,解得 当时,直线PF1与x轴的交点横坐标为,不合题意,舍去 当时,直线PF1与x轴的交点横坐标为-4, ∴c=4,F1(-4,0),F2(4,0) ∴由椭圆的定义得: ∴,即a2=18,∴b2=a2-c2=2 直线PF1能与圆C相切,直线PF1的方程为x-2y+4=0,椭圆E的方程为.(14分)
复制答案
考点分析:
相关试题推荐
如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:EN⊥平面PDB.

manfen5.com 满分网 查看答案
某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
积极参加班级工作不太主动参加班级工作合计
学习积极性高18725
学习积极性一般61925
合计242650
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
manfen5.com 满分网
查看答案
函数manfen5.com 满分网部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)设g(x)=f(x)-cos2x,求函数g(x)在区间manfen5.com 满分网上的最大值和最小值.

manfen5.com 满分网 查看答案
(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为   
manfen5.com 满分网 查看答案
若直线l:y=kx与曲线manfen5.com 满分网(参数θ∈R)有唯一的公共点,则实数k=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.