满分5 > 高中数学试题 >

求圆ρ=3cosθ被直线(t是参数)截得的弦长.

求圆ρ=3cosθ被直线manfen5.com 满分网(t是参数)截得的弦长.
先将原极坐标方程两边同乘以ρ后化成直角坐标方程,将直线的参数方程消去参数后也化成直角坐标方程,最后再利用直角坐标方程进行求解. 【解析】 将极坐标方程转化成直角坐标方程:ρ=3cosθ即:x2+y2=3x, 即; 即:2x-y=3 所以圆心到直线的距离,即直线经过圆心, 所以直线截得的弦长为3.
复制答案
考点分析:
相关试题推荐
设矩阵M对应的变换是把坐标平面上的点的横坐标伸长3倍,再将纵坐标伸长2倍的两个伸压变换的复合,求其逆矩阵M-1以及
圆x2+y2=1在M-1的作用下的新曲线的方程.
查看答案
在直径是AB的半圆上有两点M,N,设AN与BM的交点是P.求证:AP•AN+BP•BM=AB2

manfen5.com 满分网 查看答案
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
查看答案
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.
(1)求AC与PB所成的角余弦值;
(2)求二面角A-MC-B的余弦值.

manfen5.com 满分网 查看答案
已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a(其中a,b均为正整数).
(Ⅰ)若a1=b1,a2=b2,求数列{an}、{bn}的通项公式;
(Ⅱ)在(Ⅰ)的条件下,若manfen5.com 满分网(3<n1<n2<…<nk<…)成等比数列,求数列{nk}的通项公式;
(Ⅲ)若a1<b1<a2<b2<a3,且至少存在三个不同的b值使得等式am+t=bn(t∈N)成立,试求a、b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.