满分5 > 高中数学试题 >

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-...

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.
(I)由题意先求f(x)的导函数,利用导数的几何含义和切点的实质及g(x)为奇函数建立a,b,c的方程求解即可; (Ⅱ)有(1)可知函数f(x)的解析式,先对函数f(x)求导,再利用极值和单调性的概念加以求解即可. (Ⅲ)根据(1)函数的单调性,由于x∈[m-3,n]恒成立求出函数的最大值,列出不等式,求出mn的范围即可. 【解析】 (I)f′(x)=3x2+2ax+b,由题意得,1,-1是3x2+2ax+b=0的两个根, 解得,a=0,b=-3.(2分)再由f(-2)=-4可得c=-2.∴f(x)=x3-3x-2.(4分) (Ⅱ)f′(x)=3x2-3=3(x+1)(x-1),当x<-1时,f'(x)>0;当-1<x<1时,f'(x)<0;落当x>-1时,f'(x)>0.(6分)∴函数f(x)在区间(-∞,-1]上是增函数;在区间[-1,1]上是减函数;在区间[1,+∞)上是增函数.(7分) 函数f(x)的极大值是f(-1)=0,极小值是f(1)=-4.(9分) (Ⅲ)函数g(x)的图象是由f(x)的图象向右平移m个单位,向上平移4m个单位得到, 所以,函数f(x)在区间[-3,n-m]上的值域为[-4-4m,16-4m](m>0).(10分) f(-3)=-20,∴-4-4m=-20,即m=4. 于是,函数f(x)在区间[-3,n-4]上的值域为[-20,0],(12分) 令f(x)=0得x=-1或x=2. 由f(x)的单调性知,-1≤n-4≤2,即3≤n≤6. 综上所述,m应满足的条件是:m=4,且3≤n≤6(14分)
复制答案
考点分析:
相关试题推荐
据调查,湖南某地区有100万从事传统农业的农民,人均年收入3000元.为了增加农民的收入,当地政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作.据估计,如果有x(x>0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x%,而进入企业工作的农民人均年收入为3000a元(a>0为常数).
(I)在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的年总收入,求x的取值范围;
(Ⅱ)在(I)的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大?
查看答案
如图,在棱长为1的正方体ABCE-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.
(1)试确定点F的位置,使得D1E⊥平面AB1F;
(2)当D1E⊥平面AB1F时,求二面角C1-EF-A的余弦值.

manfen5.com 满分网 查看答案
已知a∈R,给出下面两个命题:命题p:“在x∈[1,2]内,不等式x2+2ax-2>0恒成立”;命题q:“关于x的不等式(a2-1)x2+(a-1)x-2>0的解集为空集”;当p、q中有且仅有一个为真命题时,求实数a的取值范围.
查看答案
已知函数f(x)=cosx•manfen5.com 满分网+sinx•manfen5.com 满分网(x∈(0.manfen5.com 满分网)∪(manfen5.com 满分网,π))
(1)化简函数f(x)并求f(manfen5.com 满分网)的值;
(2)求函数f(x)在(manfen5.com 满分网,π)上的单调区间和值域.
查看答案
在△ABC中有如下结论:“若点M为△ABC的重心,则manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网设a,b,c分别为△ABC的内角A,B,C的对边,点M为△ABC的重心.如amanfen5.com 满分网+bmanfen5.com 满分网+manfen5.com 满分网cmanfen5.com 满分网=manfen5.com 满分网,则内角A的大小为    ;若a=3,则△ABC的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.