满分5 > 高中数学试题 >

给出下列命题: A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对...

给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为manfen5.com 满分网
C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-manfen5.com 满分网=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是    (把所有正确的命题的选项都填上)
根据函数图象对称变换的法则,可以判断A是否正确,根据正弦型函数的性质,我们可以判定B的对错;根正三棱锥的几何特征,我们可以判断C的真假;而由双曲线的定义及标准方程我们又可判断出D的正误,进而得到答案. 【解析】 ∵函数y=f(x-2)图象关于直线x=2对称的函数解析式为y=f[(4-x)-2]=f(2-x) 故A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称正确; ∵已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)的图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则函数的周期为π 故ω的值为2,又由函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,由诱导公式易得θ的值为.故B正确; 若两侧面可以是等腰直角三角形,另一侧面是等腰三角形时,所得三棱锥不是正三棱锥故C错误; 由双曲线的定义,我们根据其标准方程易判断2a=2,故|PF2|=4,则|PF1|=2 或6,即D正确 故答案为:A、B、D
复制答案
考点分析:
相关试题推荐
写出“函数f (x)=x2+2ax+1(a∈R)在区间(1,+∞)上是增函数”成立的一个充分不必要条件:    查看答案
一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为manfen5.com 满分网,底面周长为3,则这个球的体积为    查看答案
司机酒后驾驶危害他人的安全,一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过     小时,才能开车?(精确到1小时) 查看答案
数列{an}满足manfen5.com 满分网,an+1=an2-an+1(n∈N*),则manfen5.com 满分网的整数部分是( )
A.3
B.2
C.1
D.0
查看答案
设G是△ABC的重心,且manfen5.com 满分网,则B的大小为( )
A.15°
B.30°
C.45°
D.60°
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.