满分5 > 高中数学试题 >

已知椭圆+=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直...

已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点S(0,manfen5.com 满分网)的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求点T坐标;若不存在,说明理由.
(Ⅰ)由消去y,得:x2+(2b-4)x+b2=0,因直线y=x+b与抛物线y2=4x相切,b=1.圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,由此能求出椭圆方程. (Ⅱ)当L与x轴平行时,以AB为直径的圆的方程:,当L与x轴垂直时,以AB为直径的圆的方程:x2+y2=1.由,解得两圆公共点(0,1).因此所求的点T如果存在,只能是(0,1).由此能够导出以AB为直径的圆恒过点T(0,1). 【解析】 (Ⅰ)由消去y,得:x2+(2b-4)x+b2=0, 因直线y=x+b与抛物线y2=4x相切,∴△=(2b-4)2-4b2,∴b=1.…(2分) ∵圆的两焦点与短轴的一个端点的连线构成等腰直角三角形, ∴,…(4分) 故所求椭圆方程为.…(5分) (Ⅱ)当L与x轴平行时,以AB为直径的圆的方程:, 当L与x轴垂直时,以AB为直径的圆的方程:x2+y2=1 由 解得, 即两圆公共点(0,1)因此,所求的点T如果存在,只能是(0,1)…(7分) (ⅰ)当直线L斜率不存在时,以AB为直径的圆过点T(0,1) (ⅱ)若直线L斜率存在时,可设直线L:y=kx-. 由,消去y得:(18k2+9)x2-12kx-16=0, 记点A(x1,y1)、B(x2,y2),则,…(9分) ∵, ∴ = = = =0. ∴TA⊥TB,…(11分) 综合(ⅰ)(ⅱ),以AB为直径的圆恒过点T(0,1).           …(12分)
复制答案
考点分析:
相关试题推荐
已知x∈R,函数f(x)=ax3+bx2+cx+d在x=0处取得极值,曲线y=f(x)过原点O(0,0)和点P(-1,2).若曲线y=f(x)在点P处的切线l与直线y=2x的夹角为45°,且直线l的倾斜角θ∈(manfen5.com 满分网,π),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数y=f(x)在区间[2m-1,m+1]上是增函数,求实数m的取值范围;
(Ⅲ)若x1、x2∈[-1,1],求证:f(x1)-f(x2)≤4.
查看答案
如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=manfen5.com 满分网
(1)求证:CD⊥平面ADS;
(2)求AD与SB所成角的余弦值;
(3)求二面角A-SB-D的余弦值.

manfen5.com 满分网 查看答案
国庆前夕,我国具有自主知识产权的“人甲型H1N1流感病毒核酸检测试剂盒”(简称试剂盒)在上海进行批量生产,这种“试剂盒”不仅成本低操作简单,而且可以准确诊断出“甲流感”病情,为甲型H1N1流感疫情的防控再添一道安全屏障.某医院在得到“试剂盒”的第一时间,特别选择了知道诊断结论的5位发热病人(其中“甲流感”患者只占少数),对病情做了一次验证性检测.已知如果任意抽检2人,恰有1位是“甲流感”患者的概率为manfen5.com 满分网
(I)求出这5位发热病人中“甲流感”患者的人数;
(II)若用“试剂盒”逐个检测这5位发热病人,直到能确定“甲流感”患者为止,设ξ表示检测次数,求ξ的分布列及数学期望Eξ.
查看答案
已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x),
(1)求f(x)的解析表达式;
(2)若α角是一个三角形的最小内角,试求函数f(x)的值域.
查看答案
给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为manfen5.com 满分网
C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-manfen5.com 满分网=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是    (把所有正确的命题的选项都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.