满分5 > 高中数学试题 >

已知函数. (Ⅰ)证明; (Ⅱ)若数列{an}的通项公式为,求数列{an}的前m...

已知函数manfen5.com 满分网
(Ⅰ)证明manfen5.com 满分网
(Ⅱ)若数列{an}的通项公式为manfen5.com 满分网,求数列{an}的前m项和Sm
(Ⅲ)设数列{bn}满足:manfen5.com 满分网,设manfen5.com 满分网,若(Ⅱ)中的Sm满足对任意不小于2的正整数n,Sm<Tn恒成立,试求m的最大值
(Ⅰ)由函数表达式证明,只需要把函数表达式代入然后化解即可. (Ⅱ)由1中证明的结果代入通项公式推得,然后根据前n项和与通项的关系求得数列{an}的前m项和Sm. (Ⅲ)由数列bn满足的条件求得再用(Ⅱ)中的Sm满足Sm<Tn恒成立,直接代入求解. (Ⅰ)证明:∵, ∴, ∴. 故答案为.. (Ⅱ)【解析】 由(Ⅰ)可知, ∴, 即. ∴, , 又Sm=a1+a2++am-1+am①Sm=am-1+am-2++a1+am② ①+②得, ∴答案为; (Ⅲ)【解析】 ∵③ ∴对任意n∈N*,bn>0④ , ∴, ∴ ∵bn+1-bn=bn2>0,∴bn+1>bn. ∴数列{bn}是单调递增数列.∴Tn关于n递增, ∴当n≥2,且n∈N*时,Tn≥T2. ∵, ∴.(14分) 由题意,即, ∴∴m的最大值为6. 故答案为6.
复制答案
考点分析:
相关试题推荐
已知 f(x)=ax-lnx,g(x)=manfen5.com 满分网,其中x∈(0,e](e是自然常数),a∈R
(Ⅰ)当a=1时,求f(x)的单调性、极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+manfen5.com 满分网;   
(Ⅲ)是否存在a∈R,使f(x)的最小值是3,若存在求出a的值,若不存在,说明理由.
查看答案
已知M(0,-2),点A在x轴上,点B在y轴的正半轴,点P在直线AB上,且满足manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=0.
(1)当A点在x轴上移动时,求动点P的轨迹C的方程;
(2)过(-2,0)的直线l与轨迹C交于E、F两点,又过E、F作轨迹C的切线l1、l2,当l1⊥l2时,求直线l的方程.
查看答案
manfen5.com 满分网在四棱锥P-ABCD中,AD⊥AB,CD∥AB∥MN,PD⊥底面ABCD,manfen5.com 满分网,直线PA与底面ABCD成60°角,点M,N分别是PA、PB的中点.
(Ⅰ)求二面角P-MN-D的大小;
(Ⅱ)当manfen5.com 满分网的值为多少时,∠CND为直角?
查看答案
甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中击中的环数均大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2
(1)求ξ,η的分布列
(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.
查看答案
已知tanθ=2
(1)求tan(manfen5.com 满分网)的值;
(2)求cos2θ的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.