根据绝对值函数的图象和性质,我们易得函数g(x)=|x-1|-|x-2|的值域为[-1,1],若关于x的不等式g(x)≥a2+a+1(x∈R)的解集为空集,则a2+a+1>1恒成立,解不等式即可求出实数a的取值范围.
【解析】
∵g(x)=|x-1|-|x-2|,
∴g(x)∈[-1,1]
若关于x的不等式g(x)≥a2+a+1(x∈R)的解集为空集,
则a2+a+1>1恒成立
即a2+a>0恒成立
解得a<-1,或a>0
即实数a的取值范围是(-∞,-1)∪(0,+∞)
故答案为:(-∞,-1)∪(0,+∞)