满分5 >
高中数学试题 >
若展开式中的第5项为常数,则n=( ) A.10 B.11 C.12 D.13
若
展开式中的第5项为常数,则n=( )
A.10
B.11
C.12
D.13
考点分析:
相关试题推荐
设全集U=R,A={x|
},则C
RA=( )
A.[1,2]
B.(1,2]
C.[1,2)
D.(1,2)
查看答案
设数列{a
n}的前n项和为S
n,已知S
n=2a
n-2
n+1 (n∈N*).
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设b
n=
,数列{b
n}的前n项和为B
n,若存在整数m,使对任意n∈N*且n≥2,都有B
3n-B
n>
成立,求m的最大值;
(Ⅲ)令c
n=(-1)
n+1,数列{c
n}的前n项和为T
n,求证:当n∈N*且n≥2时,T
2n<
.
查看答案
如图,A、B分别是椭圆
的公共左右顶点,P、Q分别位于椭圆和双曲线上且不同于A、B的两点,设直线AP、BP、AQ、BQ的斜率分别为k
1、k
2、k
3、k
4且k
1+k
2+k
3+k
4=0.(1)求证:O、P、Q三点共线;(O为坐标原点)
(2)设F
1、F
2分别是椭圆和双曲线的右焦点,已知PF
1∥QF
2,求k
12+k
22+k
32+k
42的值.
查看答案
A﹑B﹑C是直线l上的三点,向量
﹑
﹑
满足:
-[y+2f'(1)]•
+ln(x+1)•
=
;
(Ⅰ)求函数y=f(x)的表达式;
(Ⅱ)若x>0,证明f(x)>
;
(Ⅲ)当
时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.
查看答案
正四面体A-BCD的棱长为1,(Ⅰ)如图(1)M为CD中点,求异面直线AM与BC所成的角;(Ⅱ)将正四面体沿AB、BD、DC、BC剪开,作为正四棱锥的侧面如图(2),求二面角M-AB-E的大小;(Ⅲ)若将图(1)与图(2)面ACD重合,问该几何体是几面体(不需要证明),并求这几何体的体积.
查看答案