考察数列的关系,构造过点A1A20的直线,说明点在直线的上方,利用等差数列的关系求出a10的最小值即可.
【解析】
记点A1(1,1),A2(2,a2),A3(3,a3),…,A19(19,a19),A20(20,58),
则过点A1A20的直线l的方程为y=3x-2,可证明点A2,A3,…,A19均不可能在直线l的右下方区域.
而当点A2,A3,…,A19均在直线l上时,数列{an}构成等差数列,显然有,当然满足,易得公差为3,a10=28,由于点A10不可能在直线l的右下方区域,所以a10≥3×10-2=28,所以a10的最小值为28.
故答案为:28.