登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). ...
已知a∈R,函数
,g(x)=(lnx-1)e
x
+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x
∈(0,e],使曲线y=g(x)在点x=x
处的切线与y轴垂直?若存在,求出x
的值;若不存在,请说明理由.
(1)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值; (2)将曲线y=g(x)在点x=x处的切线与y轴垂直转化成方程g'(x)=0有实数解,只需研究导函数的最小值即可. 【解析】 (1)∵, ∴ 令f'(x)=0,得x=a. ①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值. ②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减, 当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增, 所以当x=a时,函数f(x)取得最小值lna ③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减, 所以当x=e时,函数f(x)取得最小值. .综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值; 当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna; 当a≥e时,函数f(x)在区间(0,e]上的最小值为. (2)∵g(x)=(lnx-1)ex+x,x∈(0,e], ∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=. 由(1)可知,当a=1时,. 此时f(x)在区间(0,e]上的最小值为ln1=0,即.(10分) 当x∈(0,e],,, ∴. 曲线y=g(x)在点x=x处的切线与y轴垂直等价于方程g'(x)=0有实数解.(13分) 而g'(x)>0,即方程g'(x)=0无实数解.、故不存在x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直.
复制答案
考点分析:
相关试题推荐
设函数f(x)=ka
x
-a
-x
(a>0且a≠1)是奇函数,
(1)求k的值;
(2)若f(1)>0,试求不等式f(x
2
+2x)+f(x-4)>0的解集;
(3)若
,且g(x)=a
2x
+a
-2x
-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
查看答案
已知函数f(x)=-x
3
+ax
2
+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值;
(2)求f(2)的取值范围.
查看答案
某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x
2
.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元).
(Ⅰ)写出y与x的函数关系式;
(Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
查看答案
已知函数
.
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.
查看答案
不等式f(x)=
的定义域为集合A,关于x的不等式
R)的解集为B,求使A∩B=B的实数a取值范围.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.