满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{a...

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式及Sn的最大值;
(II)令manfen5.com 满分网,其中n∈N*,求{nbn}的前n项和.
(I)求出f(x)的导函数即可得到a与b的值,然后把Pn(n,Sn)代入到f(x)中得到Sn=-n2+7n,利用an=Sn-Sn-1得到通项公式,令an=-2n+8≥0得到n的范围即可求出Sn的最大值; (II)由题知,数列{bn}是首项为8,公比是的等比数列,表示出{nbn}的各项,利用错位相减法求出{nbn}的前n项和即可. 【解析】 (I)∵f(x)=ax2+bx(a≠0),∴f'(x)=2ax+b 由f'(x)=-2x+7得:a=-1,b=7,所以f(x)=-x2+7x 又因为点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,所以有Sn=-n2+7n 当n=1时,a1=S1=6 当n≥2时,an=Sn-Sn-1=-2n+8,∴an=-2n+8(n∈N*) 令an=-2n+8≥0得n≤4,∴当n=3或n=4时,Sn取得最大值12 综上,an=-2n+8(n∈N*),当n=3或n=4时,Sn取得最大值12 (II)由题意得 所以,即数列{bn}是首项为8,公比是的等比数列, 故{nbn}的前n项和Tn=1×23+2×22++n×2-n+4① ② 所以①-②得: ∴
复制答案
考点分析:
相关试题推荐
某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.
(1)设半圆的半径OA=r(米),试建立塑胶跑道面积S与r的函数关系S(r)
(2)由于条件限制r∈[30,40],问当r取何值时,运动场造价最低?(精确到元)

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.
(1)求四棱锥F-ABCD的体积VF-ABCD
(2)求证:平面AFC⊥平面CBF.
(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.
查看答案
设角A,B,C是△ABC的三个内角,已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求角C的大小;
(Ⅱ)若向量manfen5.com 满分网,试求manfen5.com 满分网的取值范围.
查看答案
当实数x满足约束条件manfen5.com 满分网(其中k为小于零的常数)时,manfen5.com 满分网的最小值为2,则实数k的值是     查看答案
manfen5.com 满分网若正三棱锥的主视图与俯视图如图(单位cm),则左视图的面积为    cm2查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.