(Ⅰ)将代入ak+1+ak-1-2ak判定符号,从而确定数列{an}是否是凸数列;
(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得ak+1-ak≥ak-ak-1,从而am-an≥(m-n)(an+1-an)则,同理可得an-ak≤(n-k)(an+1-an)即,从而证得结论;
(ii)由得(m-n)ak+(n-k)am≥(m-k)an①,先证是凸数列,由①得可得结论.
【解析】
(Ⅰ)∵,
∴数列是凸数列.
证明(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得
ak+1-ak≥ak-ak-1am-an=(am-am-1)+(am-1-am-2)+…+(an+1-an)≥(m-n)(an+1-an)
⇒,an-ak=(an-an-1)+(an-1-an-2)+…+(ak+1-ak)≤(n-k)(an-an-1)≤(n-k)(an+1-an)
⇒,故.
(ii)由得(m-n)ak+(n-k)am≥(m-k)an.①
故先证是凸数列.
在(m-n)ak+(n-k)am≥(m-k)an中令m=n+1得ak+(n-k)an+1≥(n+1-k)an,令k=1,2,…,n-1,(n≥2)叠加得,⇒2Sn-1+n(n-1)(Sn+1-Sn)≥(n+2)(n-1)(Sn-Sn-1)
故是凸数列,由①得.