满分5 > 高中数学试题 >

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,...

manfen5.com 满分网在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF;
(Ⅲ)求二面角E-AC-D的大小.
(Ⅰ)把四边形面积分成2个直角三角形面积之和,代入棱锥体积公式进行计算. (Ⅱ)先证 CD⊥平面PAC,由三角形中位线的性质得EF∥CD,得到EF⊥平面PAC,从而证得平面PAC⊥平面AEF. (Ⅲ)由三垂线定理作出∠EQM为二面角E-AC-D的平面角,并证明之,解直角三角形EQM,求出∠EQM的大小. 【解析】 (Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°, ∴,AC=2(1分) 在Rt△ACD中,AC=2,∠CAD=60°, ∴,AD=4(2分) ∴(4分) 则(5分) (Ⅱ)∵PA⊥平面ABCD,∴PA⊥CD(6分) 又AC⊥CD,PA∩AC=A, ∴CD⊥平面PAC(7分) ∵E、F分别为PD、PC中点, ∴EF∥CD(8分) ∴EF⊥平面PAC(9分) ∵EF⊂平面AEF, ∴平面PAC⊥平面AEF(10分) (Ⅲ)取AD的中点M,连接EM,则EM∥PA, ∴EM⊥平面ACD,过M作MQ⊥AC于Q, 连接EQ,则∠EQM为二面角E-AC-D的平面角.(12分) ∵M为AD的中点,MQ⊥AC,CD⊥AC, ∴,又, ∴,故∠EQM=30° 即三面角E-AC-D的大小为30°(14分)
复制答案
考点分析:
相关试题推荐
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1,n=1,2,…,求数列{bn}的前n项和Tn
查看答案
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A、B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5,8,9,9,9;B班5名学生得分为:6,7,8,9,10.
(Ⅰ)请你估计A、B两个班中哪个班的问卷得分要稳定一些;
(Ⅱ)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.
查看答案
已知f (x)=manfen5.com 满分网sin2x-cos2-manfen5.com 满分网,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=manfen5.com 满分网,f (C)=0,若manfen5.com 满分网=(1,sinA)与manfen5.com 满分网=(2,sinB)共线,求a,b的值.
查看答案
设x,y满足约束条件manfen5.com 满分网,若目标函数z=ax+by(a>0,b>0)的值是最大值为10,则manfen5.com 满分网+manfen5.com 满分网的最小值为    查看答案
设x,y满足约束条件manfen5.com 满分网,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.