已知函数f(x)=e
x+4x-3.
(Ⅰ)求证函数f(x)在区间[0,1]上存在唯一的零点,并用二分法求函数f(x)零点的近似值(误差不超过0.2);(参考数据e≈2.7,
≈1.6,e
0.25≈1.3,e
0.375≈1.45);
(Ⅱ)当x≥1时,若关于x的不等式f(x)≥ax恒成立,试求实数a的取值范围.
考点分析:
相关试题推荐
已知椭圆C
1、抛物线C
2的焦点均在x轴上,C
1的中心和C
2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求C
1、C
2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C
2的焦点F;②与C
1交不同两点M、N且满足
?若存在,求出直线l的方程;若不存在,说明理由.
查看答案
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道被选题中,甲能答对其中的4道题,乙答对每道题的概率都是
.
(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设甲答对题目的个数为X,求X的分布列及数学期望.
查看答案
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF;
(Ⅲ)求二面角E-AC-D的大小.
查看答案
设{a
n}是公比大于1的等比数列,S
n为数列{a
n}的前n项和.已知S
3=7,且a
1+3,3a
2,a
3+4构成等差数列.
(1)求数列{a
n}的通项公式.
(2)令b
n=lna
3n+1,n=1,2,…,求数列{b
n}的前n项和T
n.
查看答案