满分5 > 高中数学试题 >

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点. (Ⅰ)求直...

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;
(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

manfen5.com 满分网
(I)先取AA1的中点M,连接EM,BM,根据中位线定理可知EM∥AD,而AD⊥平面ABB1A1,则EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,则∠EBM直线BE与平面ABB1A1所成的角,设正方体的棱长为2,则EM=AD=2,BE=3,于是在RT△BEM中,求出此角的正弦值即可. (II)在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1,B1C1,BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,根据中位线定理可知EG∥A1B,从而说明A1,B,G,E共面,则BG⊂面A1BE,根据FG∥C1C∥B1G,且FG=C1C=B1B,从而得到四边形B1BGF为平行四边形,则B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,根据线面平行的判定定理可知B1F∥平面A1BE. 【解析】 (I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD. 又在正方体ABCD-A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影, ∠EBM直线BE与平面ABB1A1所成的角. 设正方体的棱长为2,则EM=AD=2,BE=, 于是在RT△BEM中, 即直线BE与平面ABB1A1所成的角的正弦值为. (II)在棱C1D1上存在点F,使B1F平面A1BE, 事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG, 因A1D1,B1C1,BC,且A1D1=BC,所以四边形A1BCD1为平行四边形, 因此因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E共面,所以BG⊂A1BE 因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1G,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.
复制答案
考点分析:
相关试题推荐
设函数f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.
查看答案
设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn
查看答案
已知函数f(x)=manfen5.com 满分网sin2x-2sin2x.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)求函数f(x)的零点的集合.
查看答案
manfen5.com 满分网如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是manfen5.com 满分网manfen5.com 满分网
(1)求tan(α+β)的值;
(2)求α+2β的值.
查看答案
f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.