甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道被选题中,甲能答对其中的4道题,乙答对每道题的概率都是
.
(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设甲答对题目的个数为X,求X的分布列及数学期望.
考点分析:
相关试题推荐
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
查看答案
设{a
n}是公比大于1的等比数列,S
n为数列{a
n}的前n项和.已知S
3=7,且a
1+3,3a
2,a
3+4构成等差数列.
(1)求数列{a
n}的通项公式.
(2)令b
n=lna
3n+1,n=1,2,…,求数列{b
n}的前n项和T
n.
查看答案
已知f (x)=
sin2x-cos
2-
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
,f (C)=0,若
=(1,sinA)与
=(2,sinB)共线,求a,b的值.
查看答案
设x,y满足约束条件
,若目标函数z=ax+by(a>0,b>0)的值是最大值为10,则
+
的最小值为
.
查看答案
已知某几何体的三视图如图所示,则该几何体的表面积为
平方单位.
查看答案