满分5 > 高中数学试题 >

已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的...

已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间(-3,-2),(0,1)内.
(1)求实数b的取值范围;
(2)若函数F(x)=logbf(x)在区间(-1-c,1-c)上具有单调性,求实数c的取值范围.
(1)利用g(-2)=<0,g(-3)>0、g(0)<0、g(1)>0,求实数b的取值范围; (2)f(x)在区间(-1-c,1-c)上为增函数,F(x)=logbf(x)在(-1-c,1-c)上为减函数,利用(1)求实数c的取值范围. 【解析】 (1)由题意知f(1)=1+2b+c=0, ∴c=-1-2b 记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1 则g(-3)=5-7b>0 g(-2)=1-5b<0∴ g(0)=-1-b<0 g(1)=b+1>0  即b∈()..(7分) (2)令u=f(x).∵0< ∴logbu在(0,+∞)是减函数 而-1-c=2b>-b,函数f(x)=x2+2bx+c的对称轴为x=-b ∴f(x)在区间(-1-c,1-c)上为增函数, 从而F(x)=logbf(x)在(-1-c,1-c)上为减函数 且f(x)在区间(-1-c,1-c)上恒有f(x)>0, 只需f(-1-c)≥0, 且c=-2b-1  () 所以.(13分)
复制答案
考点分析:
相关试题推荐
圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5cosθ)2+(y-5sinθ)2=1(θ∈R),过圆M上任意一点P作圆C的两条切线PE、PF,切点分别为E、F,则manfen5.com 满分网的最小值为    查看答案
对于一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]为高斯实数或取实数,若manfen5.com 满分网,Sn为数列{an}的前n项和,则S3n=    查看答案
椭圆C1manfen5.com 满分网的左准线为l,左、右焦点分别为F1、F2,抛物线C2的准线为l,焦点为F2,C1与C2的一个交点为P,线段PF2的中点为G,O是坐标原点,则manfen5.com 满分网的值为( )
A.-1
B.1
C.-manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设a=(a1,a2),b=(b1,b2),定义一种向量积:a⊗b=(a1,b1)⊗(b1,b2)=(a1b1,a2b2).已知m=manfen5.com 满分网,n=manfen5.com 满分网,点P(x,y)在y=sin x的图象上运动,点Q在y=f(x)的图象上运动,且满足(x,f(x))=m⊗n(其中O为坐标原点),则y=f(x)的最大值A及最小正周期T分别( )
A.2,π
B.2,4π
C.manfen5.com 满分网,4π
D.manfen5.com 满分网,π
查看答案
1、已知正方体ABCD-A1B1C1D1的棱长均为1,对于下列结论:
(1)BD1⊥平面A1DC1
(2)A1C1和AD1所成角为45°;manfen5.com 满分网
(3)点A和点C1在该正方体外接球表面上的球面距离为manfen5.com 满分网
(4)E到平面ABC1的距离为manfen5.com 满分网(E为A1B1中点)
其中正确的结论个数是( )
A.0
B.1
C.2
D.3
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.